Зависимость температуры теплоносителя от наружной температуры воздуха

Температурный график работы источников и тепловых сетей

Зависимость температуры теплоносителя от наружной температуры воздуха

Температурный график определяет режим работы тепловых сетей, обеспечивая центральное регулирование отпуска тепла. По данным температурного графика определяется температура подающей и обратной воды в тепловых сетях, а также в абонентском вводе в зависимости от температуры наружного воздуха.

Применяемый в г. Москве график 150/70°С (см. графы 2 и 3 таблицы) позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производится по сниженным графикам.

Для домовых систем отопления потребителей применяется График качественного регулирования температуры воды в системах отопления при различных расчетных и текущих температурах наружного воздуха при расчетных перепадах температура воды в системе отопления 95-70 и 105-70°С (см. графы 5 и 6 таблицы).

Для сетей, работающих по температурным графикам 95-70°С и 105-70°С (графы 5 и 6 таблицы) температура воды в обратном трубопроводе систем отопления определяется по графе 7 таблицы.

Для потребителей, подключенных по независимой схеме присоединения температура воды в прямом трубопроводе определяется по графе 4 таблицы, а в обратном трубопроводе по графе 8 таблицы.

Температурный график регулирования тепловой нагрузки разрабатывается из условий суточной подачи тепловой энергии на отопление, обеспечивающей потребность зданий в тепловой энергии в зависимости от температуры наружного воздуха, чтобы обеспечить температуру в помещениях постоянной на уровне не менее 18 градусов, а также покрытие тепловой нагрузки горячего водоснабжения с обеспечением температуры ГВС в местах водоразбора не ниже + 60°С, в соответствии с требованиями СанПин 2.1.4.2496-09 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения».Температурный график регулирования тепловой нагрузки утверждается теплоснабжающей организацией.

Т наружного воздухаТ1Т'3Т3Т4T'4
150-70 с надбавкой150-70 со срезкой на 130 120-70105-7095-70после системы отопления
после отопительного бойлера
12345678
1080704338373334
980714541393435
880744743413536
780754945423637
680775147443839
580785349463940
480795651484042
380815853494143
281826055524244
183846257534345
085856459554547
-188866761574648
-291886963584749
-393897165604850
-496907366624952
-598927568645054
-6101937870655154
-7103958072675256
-8106968274685357
-9108978476705458
-10110998777715559
-111131008979735660
-121161029181745761
-131181039383765862
-141211059684785963
-151231079886796064
-1612610810088816165
-1712811210290826267
-1813011410491846369
-1913211610793856470
-2013511810995876570
-2113712111196886672
-2214012311398906773
-23142125115100916874
-24144128117102936974
-25146130119103946975
-26148130120105957076
-28150130120105957076

Обозначения

Т 1 (п. 2, 3) – температура воды в магистральной тепловой сети от источника до ЦТП

Т 3 (п. 5, 6) – температура воды в разводящих сетях отопления к потребителю после ЦТП

Т ' 3 (п. 4) – температура воды в разводящих сетях отопления к потребителю при независимой схеме присоединения с элеватором у потребителей

Т 4 (п. 7) – температура воды в обратном трубопроводе сети отопления от потребителя     для сетей, работающих по температурным графикам п. 5, 6                            
Т' 4 (п 8) – температура воды после отопительного подогревателя в ЦТП при независимой схеме присоединения

Примечание:

1. Все графики работы источников и  местных систем могут быть другими и определяются по решению проектной и энергоснеабжающей организации. Схема присоединения системы отопления выбирается при проектировании в соответствии с требованиями правилам.

Источник: http://www.sankros.ru/content/164.html

Отопительный график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха

Зависимость температуры теплоносителя от наружной температуры воздуха

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?».

Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха.

Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье регулирование температуры теплоносителя). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5, то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 оС.

Как правило, используются следующие температурные графики: 150/70, 130/70, 115/70, 105/70, 95/70. Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов».

Тепловые сети работают по температурному графику 130/70, значит при -10 оС температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 оС при графике 105/70 или 65,3 оС при графике 95/70. Температура воды после системы отопления должны быть 51,7 оС.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 оС, а на ТЭЦ или котельной задается 87 градусов.

ТемпературанаружноговоздухаТнв, оСТемпература сетевой воды в подающем трубопроводеТ1, оСТемпература воды в подающем трубопроводе системы отопленияТ3, оСТемпература воды после системы отопленияТ2, оС15013011510595876543210-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33-34-35
53,250,246,443,441,235,8
55,752,348,245,042,736,8
58,154,450,046,644,137,7
60,556,551,848,245,538,7
62,958,553,549,846,939,6
65,360,555,351,448,340,6
67,762,657,052,949,741,5
70,064,558,854,551,042,4
72,466,560,556,052,443,3
74,768,562,257,553,744,2
77,070,463,859,055,045,0
79,372,465,560,556,345,9
81,674,367,262,057,646,7
83,976,268,863,558,947,6
86,278,170,465,060,248,4
88,580,072,166,461,549,2
90,881,973,767,962,850,1
93,083,875,369,364,050,9
95,385,676,970,865,351,7
97,687,578,572,266,652,5
99,889,380,173,667,853,3
102,091,281,775,069,054,0
104,393,083,376,470,354,8
106,594,884,877,971,555,6
108,796,686,479,372,756,3
110,998,487,980,773,957,1
113,1100,289,582,075,157,9
115,3102,091,083,476,358,6
117,5103,892,684,877,559,4
119,7105,694,186,278,760,1
121,9107,495,687,679,960,8
124,1109,297,188,981,161,6
126,3110,998,690,382,362,3
128,5112,7100,291,683,563,0
130,6114,4101,793,084,663,7
132,8116,2103,294,385,864,4
135,0117,9104,795,787,065,1
137,1119,7106,197,088,165,8
139,3121,4107,698,489,366,5
141,4123,1109,199,790,467,2
143,6124,9110,6101,094,667,9
145,7126,6112,1102,492,768,6
147,9128,3113,5103,793,969,3
150,0130,0115,0105,095,070,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике «Наладка и эксплуатация водяных тепловых сетей» (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т1, Т3, Т2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Таблица расчета температурного графика в MS Excel

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т1
  • расчетная температура в обратном трубопроводе тепловой сети Т2
  • расчетная температура в подающем трубопроводе системы отопления Т3
  • Температура наружного воздуха Тн.в.
  • Температура внутри помещения Тв.п.
  • коэффициент «n» (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max.

Ввод исходных данных в таблицу расчета температурного графика

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Графическое изображение температурного графика

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

Скачать расчет температурного графика

Источник: https://energoworld.ru/blog/otopitelnyj-grafik-kachestvennogo-regulirovaniya-otpuska-tepla-po-srednesutochnoj-temperature-naruzhnogo-vozduxa/

Регулирование температуры в зданиях

Зависимость температуры теплоносителя от наружной температуры воздуха

Производственные и жилые здания имеют большую тепловую инерцию, поэтому для регулирования температуры в зданиях не годятся обычные методы регулирования. Традиционные методы регулирования (позиционный и ПИД) являются методами регулирования по отклонению температуры.

То есть, сначала температура должна отклониться от заданной, а затем прибор примет решение об изменении мощности, подводимой к объекту. Другим известным математическим методом является метод регулирования по возмущению.

В этом случае регистрируется не температура объекта, а внешние тепловые воздействия на объект, рассчитывается их возможное влияние на температуру объекта и принимается решение об изменении мощности, подводимой к объекту. В применении к задачам отопления это означает, что требуется измерять температуру не в здании, а на улице.

Теплопотери здания зависят от наружной температуры. Чем холоднее температура на улице, тем больше тепловой энергии нужно подавать в здание. Отопительным графиком называется зависимость требуемой температуры теплоносителя от наружной температуры. График является индивидуальным для каждого здания.

Регулирование по отопительному графику

Приборы Термодат специально разработаны для задач отопления. Регулирование температуры теплоносителя, подаваемого в здание, ведется по отопительному графику. Отопительный график заносится в память прибора по точкам (10 точек от -35 до +10, через 5 градусов). График должен быть рассчитан или найден экспериментально наладчиком. Типовой пример отопительного графика приведен в таблице:

Температура на улице, Тнаружная, °C Температура теплоносителя, Т °C
-3593
-3084
-2576
-2069
-1562
-1056
-550
045
+540
+1035

В системах централизованного отопления от тепловой магистрали температура теплоносителя регулируется, как правило, электроуправляемой задвижкой, установленной в первичном трубопроводе перед бойлером.

При зависимой схеме подключения к теплосети, температура теплоносителя регулируется управляемым элеватором или иным способом. Регулирование задвижкой или элеватором ведется по трехпозиционному импульсному закону.

В системах индивидуального электроотопления температура теплоносителя после электрокотла регулируется путем измерения мощности ТЭНов, по позиционному или ПИД закону.

Учет температуры воздуха в здании

График отопления строится приведенным к температуре внутри здания равной 20С. То есть в идеальном случае, если подать теплоноситель в здание с температурой определенной из графика, температура в здании будет равна 20С.

В этом случае не учитываются внутренние источники тепла в здании, солнечное излучение и ветер. Поэтому в ветреную погоду в здании будет холодно, а в солнечную жарко.

Кроме того, требуется изменять температуру в здании в зависимости от времени суток для экономии тепла.

Ттеплоносителя = Тгр+f1(Тнаружная)*(Тзаданная-20) + K2*f2(Тнаружная)*(Тзаданная — Твнутренняя)

В приведенной формуле первое слагаемое Тгр — температура, определенная из отопительного графика. Второе слагаемое учитывает сдвиг графика при отличии уставки внутренней температуры от 20°С. Функция f1 от наружной температуры задается разработчиком прибора.

Третье слагаемое вводит поправку к температуре теплоносителя, вызванную отклонением внутренней температуры воздуха от заданной. Функция f2 задается разработчиком. Коэффициент k2 задается наладчиком системы в третьем уровне режима настройки прибора. Иногда не требуется измерять температуру в здании и вводить поправку по внутренней температуре.

В этом случае коэффициент К2 следует задать равным нулю, а датчик внутренней температуры можно не устанавливать.

Ограничение температуры обратки

В системах централизованного отопления от тепловой магистрали, необходимо контролировать и ограничивать температуру обратки. Если управлять системой отопления без учета температуры обратки, вместо экономии можно получить убыток от штрафов. В приборах Термодат для этого введен дополнительный контур управления.

Прибор рассчитывает максимально допустимую температуру обратки. Если температура обратки выходит за допустимый предел, прибор уменьшает подачу теплоносителя из тепловой сети и переходит в режим поддержания максимально допустимой температуры обратки.

Температура обратки управляется той же электрозадвижкой, что и температура теплоносителя. Приоритет автоматически отдается алгоритму управления температуры обратки.

То есть если в здании холодно, и прибор знает , что нужно увеличить подачу тепла в здание, он не сможет это сделать, пока температура обратки не снизится до допустимой нормы. Максимально допустимая температура обратки может определяться в приборах Термодат одним из двух способов:

  • по температуре теплоносителя поступающего из теплоцентрали. Для этого устанавливается дополнительный датчик температуры первичного теплоносителя. Температура обратки находится по графику, задаваемому теплосетсями и записанному в память прибора.
  • по температуре наружного воздуха. Температура обратки находится по другому графику, задаваемому теплосетями, который записывается наладчиком в память прибора.

Выбор способа определения максимально допустимой температуры обратки зависит от способа контроля обратки энергоснабжающей организацией. Таким образом, для решения задачи регулирования температуры в здании, прибор Термодат имеет пять датчиков температуры:

  • для измерения температуры воздуха на улице,
  • для измерения температуры воздуха в здании,
  • для измерения температуры теплоносителя, подаваемого в здание (после бойлера),
  • для измерения температуры обратки,
  • для измерения температуры теплоносителя в сети.

Источник: http://termodat.msk.ru/article/regulirovanie-temperaturyi/regulirovanie-temperaturyi-v-zdaniyah

Температурный график отопления

Зависимость температуры теплоносителя от наружной температуры воздуха

26 Мар 2014
Рубрика: Теплотехника | 64

Компьютеры уже давно и успешно работают не только на столах офисных работников, но и в системах управления производственными и технологическими процессами. Автоматика успешно управляет параметрами систем теплоснабжения зданий, обеспечивая внутри них…

…заданную необходимую температуру воздуха (иногда для экономии меняющуюся в течение суток).

Но автоматику необходимо грамотно настроить, дать ей исходные данные и алгоритмы для работы! В этой статье рассматривается оптимальный температурный график отопления – зависимость температуры теплоносителя водяной системы отопления при различных температурах наружного воздуха.

Эта тема уже рассматривалась в статье о водяном отоплении.

Здесь мы не будем рассчитывать теплопотери объекта, а рассмотрим ситуацию, когда эти теплопотери известны из предшествующих расчетов или из данных фактической эксплуатации действующего объекта.

Если объект действующий, то лучше взять значение теплопотерь при расчетной температуре наружного воздуха из статистических фактических данных предыдущих лет эксплуатации.

В упомянутой выше статье для построения зависимостей температуры теплоносителя от температуры наружного воздуха решается численным методом система нелинейных уравнений. В этой статье будут представлены «прямые» формулы для вычисления температур воды на «подаче» и на «обратке», представляющие собой аналитическое решение задачи.

Предложенный далее расчет в Excel можно выполнить также в программе OOo Calc из пакета Open Office.

О цветах ячеек листа Excel, которые применены для форматирования в статьях, можно прочесть на странице«О блоге».

Расчет в Excel температурного графика отопления

Итак, при настройке работы котла и/или теплового узла от температуры наружного воздуха системе автоматики необходимо задать температурный график.

Возможно, правильнее датчик температуры воздуха разместить внутри здания и настроить работу системы управления температурой теплоносителя от температуры внутреннего воздуха. Но часто бывает сложно выбрать место установки датчика внутри из-за разных температур в различных помещениях объекта или из-за значительной удаленности этого места от теплового узла.

Рассмотрим пример. Допустим, у нас имеется объект – здание или группа зданий, получающие тепловую энергию от одного общего закрытого источника теплоснабжения – котельной и/или теплового узла.

Закрытый источник – это источник, из которого запрещен отбор горячей воды на водоснабжение.

В нашем примере будем считать, что кроме прямого отбора горячей воды отсутствует и отбор тепла на нагрев воды для горячего водоснабжения.

Для сравнения и проверки правильности расчетов возьмем исходные данные из вышеупомянутой статьи «Расчет водяного отопления за 5 минут!» и составим в Excel небольшую программу расчета температурного графика отопления.

Исходные данные:

1. Расчетные (или фактические) теплопотери объекта (здания) в Гкал/час при расчетной температуре наружного воздуха tнр записываем

в ячейку D3: 0,004790

2. Расчетную температуру воздуха внутри объекта (здания) tвр в °C вводим

в ячейку D4: 20

3. Расчетную температуру наружного воздуха tнр  в °C заносим

в ячейку D5: -37

4. Расчетную температуру воды на «подаче» tпр  в °C вписываем

в ячейку D6: 90

5. Расчетную температуру воды на «обратке» tор  в °C вводим

в ячейку D7: 70

6. Показатель нелинейности теплоотдачи примененных приборов отопления nзаписываем

в ячейку D8: 0,30

7. Текущую (интересующую нас) температуру наружного воздуха   в °C заносим

в ячейку D9: -10

Значения в ячейках D3 – D8 для конкретного объекта записываются один раз и далее не меняются. Значение в ячейке D8 можно (и нужно) изменять, определяя параметры теплоносителя для различной погоды.

Результаты расчетов:

8.Расчетный расход воды в системе Gр в т/час вычисляем

в ячейке D11: =D3*1000/(D6-D7) =0,239

Gр=Qр*1000/(tпрtор)

9.Относительный тепловой поток q определяем

в ячейке D12: =(D4-D9)/(D4-D5) =0,53

q=(tврtн)/(tврtнр)

10.Температуру воды на «подаче» tп в °C рассчитываем

в ячейке D13: =D4+0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12(1/(1+D8)) =61,9

tп=tвр+0,5*(tпрtор)*q+0,5*(tпр+tор-2*tвр)*q(1/(1+n))

11.Температуру воды на “обратке” tо в °C вычисляем

в ячейке D14: =D4-0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12(1/(1+D8)) =51,4

tо=tвр-0,5*(tпрtор)*q+0,5*(tпр+tор-2*tвр)*q(1/(1+n))

Расчет в Excel температуры воды на «подаче»tп и на «обратке»tо для выбранной температуры наружного воздухаtн выполнен.

Сделаем аналогичный расчет для нескольких различных наружных температур и построим температурный график отопления. (О том, как строить графики в Excel можно прочитать здесь.)

Произведем сверку полученных значений температурного графика отопления с результатами, полученными в статье «Расчет водяного отопления за 5 минут!» — значения совпадают!

Итоги

Практическая ценность представленного расчета температурного графика отопления заключается в том, что он учитывает тип установленных приборов и направление движения теплоносителя в этих приборах. Коэффициент нелинейности теплоотдачи n, оказывающий заметное влияние на температурный график отопления у разных приборов различный:

у чугунных радиаторов n=0,15…0,30 (зависит от способа подключения);

у конвекторов n=0,30…0,35 (зависит от марки прибора).

Для любых приборов отопления коэффициент нелинейности теплоотдачи n можно найти в технической документации заводов-изготовителей.

По величине относительного теплового потока q можно понять, что, например, при температуре наружного воздуха =-8 °С в нашем примере котел или система должны работать на 50% номинальной мощности для поддержания в помещении температуры внутреннего воздуха tвр=+20 °С.

Используя температурный график отопления, можно быстро выполнить экспресс-аудит системы и понять есть недогрев «подачи» или перегрев «обратки», а так же оценить величину расхода теплоносителя.

Конечно, теплопотери здания зависят от переменных в течение суток и месяцев силы ветра, влажности воздуха, инсоляции, однако главнейшим влияющим фактором все-таки на 90…95% является температура наружного воздуха.

Прошу уважающих труд автора  скачивать файл после подписки на анонсы статей!

Ссылка на скачивание файла: temperaturnyy-grafik-otopleniya (xls 26,0KB).

Другие статьи автора блога

Источник: http://al-vo.ru/teplotekhnika/temperaturnyj-grafik-otopleniya.html

Температура в системе отопления

Зависимость температуры теплоносителя от наружной температуры воздуха

Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс. Но это теория. Фактически большинство сетей работает на 95-110 °С, так как сетевые трубы большинства населённых пунктов изношены и высокое давление порвёт их как тузик грелку. Растяжимое понятие — норма.

Температура батарей отопления в квартире никогда не равна первичному показателю носителя тепла. Здесь выполняет энергосберегающую функцию элеваторный узел – перемычка между прямой и обратной трубой.

Нормы температуры теплоносителя в системе отопления по обратке зимой допускают сохранение тепла на уровне 60 °С. Жидкость из прямой трубы попадает в сопло элеватора, перемешивается с обратной водой и опять уходит в домовую сеть на обогрев.

Температура носителя за счет подмешивания обратки понижается. Что влияет на вычисление количества тепла, потреблённого жилыми и подсобными помещениями.

Зависимость температуры теплоносителя от наружной температуры воздуха

Внимание Обычно ставят решетчатое ограждение, не препятствующее циркуляции воздуха. Распространены чугунные, алюминиевые и биметаллические устройства. Выбор потребителя: чугун или алюминий Эстетика чугунных радиаторов – притча во языцех.

Они требуют периодической покраски, так как правила предусматривают, чтобы рабочая поверхность отопительного прибора имела гладкую поверхность и позволяла легко удалить пыль и грязь. На шершавой внутренней поверхности секций образуется грязный налет, уменьшающий теплоотдачу прибора.

Но технические параметры чугунных изделий на высоте:

  • мало подвержены водной коррозии, могут эксплуатироваться более 45 лет;
  • обладают высокой тепловой мощностью на 1 секцию, поэтому компактны;
  • инертны в передаче тепла, поэтому хорошо сглаживают температурные перепады в комнате.

Другой тип радиаторов изготовлен из алюминия.

Нормы и оптимальные значения температуры теплоносителя

Пункт 10.

10 — Глава 10 Гидравлический режим Значение давления воды в обратном трубопроводе водяных тепловых сетей при работе сетевых насосов должно быть в любой точке не ниже 0,05МПа, но не выше от допустимого для трубопроводов и оборудования источника теплоснабжения, тепловых сетей и тепловых пунктов систем теплопотребления, присоединённых по зависимой схеме. Пункт 10.

11 — Глава 10 Гидравлический режим Значение давления воды в обратных трубопроводах водяных тепловых сетей открытых систем теплоснабжения в неотопительный период, а также в подающем и циркуляционном трубопроводах сети горячего водоснабжения следует принимать больше на 0,05МПа от статического давления систем горячего водоснабжения потребителей.

Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём. Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный.
    В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды.

И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше. Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

г) для подающего и циркуляционного трубопроводов сетей горячего водоснабжения:

  • давление — по наибольшему давлению в подающем трубопроводе при работе насосов с учётом рельефа местности;
  • температуру — в соответствии со СНиП 2.04.01.

Пункт 16.

9 — Глава 16 Тепловые пункты При расчётах поверхности нагрева водяных теплообменных аппаратов для систем горячего водоснабжения и отопления температуру воды в подающем трубопроводе тепловой сети следует принимать равной температуре в точке излома графика температур воды или минимальной температуре воды, если отсутствует излом графика температур, а для систем отопления — также температуру воды соответствующую расчётной температуре наружного воздуха для проектирования отопления. Как расчётную следует принимать большую из полученных величин поверхностей нагрева.

  • 4. Температуру теплоносителя в системах, использующих возобновляемые источники энергии, следует определять технико-экономическим расчетом.

Пункт 3.25 — Глава 3 Отопление Скорость движения теплоносителя в трубопроводах следует принимать в зависимости от допустимого эквивалентного уровня звука в помещении, устанавливаемого СНиП II-12-77:

  • а) выше 40 дБА — не более 1,5 м/с в общественных зданиях и помешениях; не более 2 м/с в административно-бытовых зланиях и помещениях; не более 3 м/с в производственных зданиях и помещениях;
  • б) 40 дБА и ниже — по обязательному приложению 14.

Пункт 3.28 — Глава 3 Отопление Разность давлений в подающем и обратном трубопроводах на вводе в здание для расчета систем отопления в типовых проектах следует принимать 150 кПа.

C на протяжении трёх суток;

  • усреднённую расчётную температуру внутреннего воздуха отапливаемых зданий жилищно-коммунального и общественного назначения 20°С, а для промышленных зданий 16°С;
  • усреднённую расчётную температуру внутреннего воздуха отапливаемых зданий детских дошкольных, общеобразовательных учебных и лечебных заведений должны обеспечивать поддержание температурного режима этих заведений в соответствии с требованиями ДБН В.2.2-10, ДБН В.2.2-4, ДСанПиН 5.5.2.008, СП №3231-85.

Пункт 9.8.4 — Раздел 9.8 Регулирование отпуска тепловой энергии — Глава 9 Теплоноситель и его параметры На источниках тепловой энергии в отопительный период следует выполнять качественное регулирование температуры теплоносителя в подающем трубопроводе в соответствии с температурным графиком.

Температура в системе отопления частного дома

Трубы входят в подвальное помещение строения.

Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.

Количество задвижек коррелирует с количеством стояков. При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.

Важно Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения. Градусы здесь и там Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной.

Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.
Температурный график подачи рассчитывается с учетом параметров наружного воздуха.

Так, для региона Южный Урал принимается к расчету минус 32 градуса.

Температура теплоносителя в системе отопления многоквартирного дома

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха: Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе +10 70 55 +9 70 54 +8 70 53 +7 70 52 +6 70 51 +5 70 50 +4 70 49 +3 70 48 +2 70 47 +1 70 46 0 70 45 -1 72 46 -2 74 47 -3 76 48 -4 79 49 -5 81 50 -6 84 51 -7 86 52 -8 89 53 -9 91 54 -10 93 55 -11 96 56 -12 98 57 -13 100 58 -14 103 59 -15 105 60 -16 107 61 -17 110 62 -18 112 63 -19 114 64 -20 116 65 -21 119 66 -22 121 66 -23 123 67 -24 126 68 -25 128 69 -26 130 70 СНиП Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Температура теплоносителя в системе отопления частного дома

Обогрев лестничной клетки Раз уж речь зашла о многоквартирном доме, то следует упомянуть лестничные клетки.

Нормы температуры теплоносителя в системе отопления гласят: градусная мера на площадках не должна опускаться ниже 12 °С.

Конечно, дисциплина жильцов требует закрывать плотно двери входной группы, не оставлять раскрытыми фрамуги лестничных окон, сохранять стёкла в целостности и оперативно сообщать в управляющую компанию о неполадках.

Если УК не примет вовремя меры по утеплению точек вероятных потерь тепла и соблюдению температурного режима в доме, поможет заявление на перерасчёт стоимости услуг. Изменения в конструкции обогрева Замену существующих отопительных приборов в квартире производят с обязательным согласованием с управляющей компанией. Самовольное изменение элементов согревающего излучения может нарушить тепловой и гидравлический баланс строения.

Источник: http://juristufa.ru/2018/04/18/temperatura-v-sisteme-otopleniya/

Температура теплоносителя в тепловой сети москва

Зависимость температуры теплоносителя от наружной температуры воздуха

С от 97 до 109 79-86 от 56 до 72 -18 °С от 99 до 112 81-88 от 56 до 74 -19 °С от 101 до 114 82-90 от 57 до 75 -20 °С от 102 до 116 83-91 от 58 до 76 -21 °С от 104 до 118 85-93 от 59 до 77 -22 °С от 106 до 120 88-94 от 59 до 78 -23 °С от 108 до 123 87-96 от 60 до 80 -24 °С от 109 до 125 89-97 от 61 до 81 -25 °С от 112 до 128 90-98 от 62 до 82 -26 °С от 112 до 128 91-99 от 62 до 83 -27 °С от 114 до 130 92-101 от 63 до 84 -28 °С от 116 до 134 94-103 от 64 до 86 -29 °С от 118 до 136 96-105 от 64 до 87 -30 °С от 120 до 138 97-106 от 67 до 88 -31 °С от 122 до 140 98-108 от 66 до 89 -32 °С от 123 до 142 100-109 от 66 до 93 -33 °С от 125 до 144 101-111 от 67 до 91 -34 °С от 127 до 146 102-112 от 68 до 92 -35 °С от 129 до 149 104-114 от 69 до 94 Что также важно знать? Благодаря табличным данным, не составляет особого труда узнать о температурных показателях воды в системах центрального отопления.

Как правило, используются следующие температурные графики: 150/70, 130/70, 115/70, 105/70, 95/70. Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70.

Важно По графикам 150, 130 и 115/70 работают магистральные тепловые сети. Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов».

Тепловые сети работают по температурному графику 130/70, значит при -10 оС температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 оС при графике 105/70 или 65,3 оС при графике 95/70.

Температура воды после системы отопления должны быть 51,7 оС. Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются.

Блог об энергетике

График зависимости может быть различный. Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией. Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха: Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника.

Внимание Он считается высоким, когда возвращённая жидкость поступает охлаждённая. Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления.
И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Температура теплоносителя в зависимости от наружной температуры

В заморозки для того, чтобы сохранить в квартире постоянную температуру, требуется куда больше тепловой энергии, чем в теплую погоду.Уточним: затраты тепла определяются не абсолютным значением температуры воздуха на улице, а дельтой между улицей и внутренними помещениями.Так, при +25С в квартире и -20 во дворе затраты тепла будут точно такими же, как при +18 и -27 соответственно.

  • Тепловой поток от отопительного прибора при постоянной температуре теплоносителя тоже будет постоянным.Падение температуры в помещении несколько увеличит его (опять-таки за счет увеличения дельты между теплоносителем и воздухом в комнате); однако этого увеличения будет категорически недостаточно для компенсации возросших потерь тепла через ограждающие конструкции.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго». Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов. При этом, на выходе они будут иметь 70°C. Полученные результаты сносятся в единую таблицу, для последующего построения кривой: Итак, мы получили три различные схемы, которые можно взять за основу.

Измеряется нужная часть теплоносителя обыкновенным градусником в тот момент, когда происходит спуск системы. Выявленные несоответствия фактических температур установленным нормам является основанием для осуществления перерасчёта оплаты коммунальной услуги. Очень актуальными на сегодняшний день стали общие домовые счётчики учёта тепловой энергии.

Ответственность за температуру воды, которая нагревается в теплотрассе, несёт местная ТЭЦ или же котельная.

Транспортировка тепловых носителей и минимальные потери возложены на организацию, обслуживающую тепловую сеть. Обслуживает и настраивает элеваторный узел ЖЭУ или управляющая компания.

Важно знать, что диаметр самого сопла элеватора обязательно должен быть согласован с коммунальной тепловой сетью.

  • 1 Дополнительно влияющие факторы
  • 2 Температура в радиаторе
  • 3 Что влияет на температуру батарей?
  • 4 Утверждённые графики
  • 5 Что также важно знать?
  • 6 Нормы в жилых помещениях
  • 7 Задать вопрос юристу бесплатно

Сегодня наиболее распространёнными отопительными системами на территории Федерации являются работающие на воде.

Температура воды в батареях непосредственно зависит показателей температуры воздуха снаружи, то есть на улице, в определённый период времени.

Законодательно утверждён и соответствующий график, согласно которому ответственные специалисты рассчитывают температуры, беря во внимание местные погодные условия и источник теплового снабжения.

Чтобы разъяснить разницу между этими понятиями, вероятно, стоит начать с краткого экскурса в то, как устроено центральное отопление. ТЭЦ — тепловые сети Функция этой связки — нагреть теплоноситель и доставить его конечному потребителю.

Протяженность теплотрасс обычно измеряется километрами, суммарная площадь поверхности — тысячами и тысячами квадратных метров.
Несмотря на меры по теплоизоляции труб, потери тепла неизбежны: пройдя путь от ТЭЦ или котельной до границы дома, техническая вода успеет частично остыть.

Отсюда — вывод: для того, чтобы она дошла до потребителя, сохранив приемлемую температуру, подача теплотрассы на выходе из ТЭЦ должна быть максимально горячей.

Источник: http://lic-r.ru/temperatura-teplonositelya-v-teplovoj-seti-moskva/

ПраваСовет
Добавить комментарий